
NAIRS: A Neural A�entive Interpretable Recommendation
System

Shuai Yu†, Yongbo Wang†, Min Yang†, Baocheng Li†, Qiang �†, Jialie Shen‡

† SIAT, Chinese Academy of Sciences
‡ Newcastle University, United Kingdom

{shuai.yu,yb.wang,min.yang,bc1.li,qiang}@siat.ac.cn,jialie@gmail.com

ABSTRACT
In this paper, we develop a neural a�entive interpretable recom-
mendation system, named NAIRS. A self-a�ention network, as
a key component of the system, is designed to assign a�ention
weights to interacted items of a user. �is a�ention mechanism
can distinguish the importance of the various interacted items in
contributing to a user pro�le. Based on the user pro�les obtained by
the self-a�ention network, NAIRS o�ers personalized high-quality
recommendation. Moreover, it develops visual cues to interpret
recommendations. �is demo application with the implementation
of NAIRS enables users to interact with a recommendation system,
and it persistently collects training data to improve the system. �e
demonstration and experimental results show the e�ectiveness of
NAIRS.

KEYWORDS
Collaborative �ltering, Self-a�ention network, Interpretable recom-
mendation, Item-based recommendation

1 INTRODUCTION
With the huge volumes of online information, a�ention has been
continuously paid to recommender systems [11, 12]. Item-based
collaborative �ltering (CF) is one of the most successful techniques
in practice due to its simplicity, accuracy, and scalability [7, 8,
10]. It pro�les a user with the historically interacted items and
recommends similar items in terms of user pro�les.

Most of the existing item-based CF methods utilize statistical
measures (e.g., cosine similarity) to estimate item similarities. How-
ever, the assumption of equal weights is o�en applied for the items
in the measurement [7]. In other words, di�erent items in the
historical list are equally treated, which is not true for many of
the real-world recommendation applications. On the other hand,
interpretable recommendations are of increasing interest, which
explain the underlying reasons for the potential user interest on
the recommended items. Traditional methods o�en generate ex-
planations from the textual data such as the content and reviews

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM’18, Italy
© 2018 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

associated with the items [2–4, 13]. Yet, generating reasons of rec-
ommendation remains unsolvable when the texts are unavailable.

Inspired by the recent successes of a�ention-based neural net-
works [1] in computer vision and natural language processing,
this paper proposes a neural a�entive interpretable recommenda-
tion system (NAIRS) to alleviate the aforementioned limitations.
�e key to the design of NAIRS is an self-a�ention network that
computes the a�ention weights of the historical items in a user
pro�le according to their intent importance associated with the
user’s preferences. With the learned a�ention weights, NAIRS
provides a high-quality personalized recommendation to users ac-
cording to their historical preferences. Meanwhile, it interprets the
reasons of recommendation by visualizing the learned a�ention
weights for the user’s historical list. �e function of personalized
and interpretable recommendation assists users and manufacturer
in identifying results of interest and exploring alternative choices
more e�ciently. In addition, NAIRS enables users to search for the
users who have the similar results and search for the items which
are similar to the chosen item. �e two functions help the users to
discover more potentially interesting items. Furthermore, NAIRS
actively records users’ interactive behaviors in the system, such
as their input queries, liked items, and clicked results. �e logged
information is then utilized to improve the quality of user pro�ling
for be�er recommendation.

2 CORE ALGORITHM
We denote a user-item interaction matrix as R ∈ RM×N , where
M and N are the number of users and items, respectively. We use
R = {(i, j)|Ri j = 1} to denote the set of user-item pairs and use
R+u to denote the set of items that user u has interacted with. As
described in [7], each item has two embedding vectors p and q to
distinguish its role of history item and prediction target. �e FISM
[7] is one of the most widely used collaborative �ltering method,
which achieves the state-of-the-art performance among the item-
based methods. In its standard se�ing, the prediction of a user u to
an item i can be calculated as below:

r̂ui = bu + bi + (
1
|R+u |α

∑
j ∈R+u

pTj) · qi , (1)

where bu and bi denote the user and item biases, respectively.
Despite the e�ectiveness of FISM, we argue that its performance

is hindered by assigning equal weight to each interacted item. To
address this limitation, we propose a neural a�entive network
to assign di�erent weights to the items according to their intent
importance. Mathematically, the prediction of user u to item i can

CIKM’18, October 22-26 2018, Italy Shuai Yu†, Yongbo Wang†, Min Yang†, Baocheng Li†, Qiang�†, Jialie Shen‡

Recommendation Module
Data Resource

Amazon, JD,

IMDB

Data Crawler

Online feed

Data Preprocessor

Data Storage

Neural Attentive

Recommendation Model

Model Trainer

Model Evaluation

Dataset Creator

Interpretation Module

Recommendation Results

Retrieval Module

A
P

I L
a
y

er

Function

CallsFeed

Similar Users

Similar Items

Visual Cues

Logging module

Users Feedback

Figure 1: Architecture overview of NAIRS.

be calculated as

r̂ui = bu + bi + (
∑
j ∈R+u

αujpTj) · qi , (2)

where αuj is the a�ention weight of item j in contributing to user
u’s representation. Speci�cally, we exploit self-a�ention to learn
the representation of user u, each of the historical items learns
to align to each other. �e weight αuj of each historical item j is
computed by

αuj =
exp(e(pj))

[∑k ∈R+u exp(e(pk))]β
, (3)

e(pj) = VTд(W · pj + b), (4)

where e(pj) is an alignment model which scores the contribution of
item j to the representation of user u. To form a proper probability
distribution over the items, we normalize the scores across the
items using so�max function and get a�ention score αuj . β is
a smoothing hyper parameter that will be discussed later in this
section. V andW are the weight matrices, and д(·) is the activation
function. In this paper, we choose tanh as activation function for
its be�er performance compared with relu and siдmoid .

In practice, the standard a�ention network fails to learn from
users’ historical data and perform accurate recommendation. By
analyzing the a�ention weights outpu�ed by the model, we reveal
that the performance of the model is largely hindered by the so�max
function, due to the large variances on the lengths of user histories.
�e a�ention weights of the items from long history list are largely
decreased. To address this problem, we introduce a new symbol β
to smooth the denominator of the original a�ention formula. β can
be set in a range of [0, 1]. If β = 1, then Eq. (3) degenerates into the
original so�max. One typically chooses the value of β between zero
and one. �is smooth se�ing leads to much be�er performance
than standard so�max function.

Following the strategy in the previous work [5], we treat the
observations as positive instances and randomly sample the unob-
served items as negative instances. Cross entropy is adopted as the
objective function, which minimizes the regularized log loss:

L = − 1
N


∑

(u,i)∈R+u
rui logσ (r̂ui) +

∑
(u,i)∈R−u

(1 − rui) log(1 − σ (r̂ui))


+λ ‖θ ‖2
(5)

where N denotes the number of the training instances, θ denotes
the parameters of the model.

3 SYSTEM ARCHITECTURE
�e proposed NAIRS, overviewed in Figure 1, consists of �ve main
modules. (1) �e Data crawler module collects user interactive
information from various websites such as Amazon, Jindong, and
IMDB. (2) �e Recommendation module produces recommendation
results and interpretable partial scores of user-item pairs. (3) �e
Interpretation module visualizes the interpretable reasons of the
recommendation by scoring user’s historical list. (4) �e Retrieval
module enables the users to i) �nd people with similar preferences
(with historical lists) and ii) explore the items that are similar to
a user-speci�ed item. �is module e�ectively assists the users in
�nding more items in which they may be interested. (5) �e Logging
module collects user behaviors from the system, such as chosen
items. �e logging information is utilized to further improve the
recommender system. In the rest of this section, we elaborate each
module of the above.

3.1 Data Crawler Module
�e data crawler collects three types of user-item interactive data: (i)
movie rating data from IMDB1; (2) books rating data from Amazon2;
and (3) daily goods rating data from Jingdong3. For movie rating
data, users are selected at random for inclusion. All selected users
have rated at least one movie. For book rating data, we focus on
the top 1000 popular books. We also collect six categories of daily
goods including clothes, shoes, cosmetics, foods, toys, and smart
phones. In this work, all user-sensitive information is removed.

3.2 Recommendation Module
We implement the interpretable recommendation algorithm intro-
duced in Section 2 to perform top-n item recommendation. Our
recommendation model is implemented with the TensorFlow4 li-
brary and trained on a NVIDIA Titan Xp GPU. A�er training, we
can obtain the user and item representations for each user and item,
which are then used to predict the rating scores and assign weights
to items in user’s historical list for interpretation. In addition, we
can obtain the similar users and similar items results easily with
the learned user and item representations. �e results learned by
Recommendation module can be directly used by the Interpretation
module and the Retrieval module.

Note that during the bootstrap process NAIRS provides users a
navigation page in which the users can choose the items that they
are interested in. �is process can alleviate the cold start problem
in recommendation to some extent, especially for new users.

3.3 Interpretation Module
Given a user u, the historical items Ru , and a recommended item
qi , the Interpretation module provides the top-n recommendation
results and interprets the reasons of the recommendation by visual-
izing the a�ention scores of user u’s historical list Ru . In particular,

1h�ps://www.imdb.com
2h�ps://www.amazon.com
3h�ps://www.jd.com
4h�ps://www.tensor�ow.org/

NAIRS: A Neural A�entive Interpretable Recommendation System CIKM’18, October 22-26 2018, Italy

search similar userssearch similar items

The tag cloud shows the historical movies of the current user. It will
change when the users click recommendation list in the right.

Query Box

Figure 2: �e Neural A�entive Interpretable Recommendation System. �e top part shows the Interpretable Recommendation
module, the bottom part shows the Retrieval Module. �e user’s historical interacted movies are displayed in the tag cloud.
When the user clicks a movie in the recommendation list, the related movies in the tag cloud will become bigger. �e user can
either search similar items in the query box or click the movie’s name in the tag cloud. �e user can also click the link bellow
the user logo to explore the users who have similar interests to her/him.

we support the users to add interested movies into their pro�le list
or delete the movies they do not like. NAIRS then demonstrates
the recommendation results (on the right of the interface) and in-
terprets the reason of each recommendation with a tag cloud (in
the center of the interface), as shown in Figure 2. �e importance
of each item in the user’s historical list is shown with various font
sizes. �e larger the item names, the more important the items
in contributing to the recommendation. For example, the movie
Men in Black is recommended based on Nikata in the user’s his-
torical list which has the highest a�ention score. We show that
these two movies both belong to the action movie category. On the
other hand, the movie Escape from New York contributes li�le to
recommend movie In the Army Now since they belong to di�erent
categories.

3.4 Retrieval Module
3.4.1 Similar Users. �e Similar Users module can assist end

users to �nd other users who have similar interests. �is module
plays an important role in helping the users who might not know
exactly what they are looking for to discover potentially interesting
items based on the observation that people who agree in the past
are likely to agree again. In order to overcome the insensitive

of average value, we calculate the similarity between users with
adjusted cosine similarity as follows:

sim(u,u ′) = 1 +
∑
k (uk − ū)·(u′k − ūk)√∑ (uk − ū)2

√∑ (u′k − ū′)2
, (6)

where ū and ū ′ are the average values over the user’s embedding
dimensions. Note that we map the value space of the similarity from
[-1, 1] to [0, 2] to provide positive similarity scores for be�er visu-
alization. As shown in Figure 2, we visualize the similar users with
their historical lists. In addition, we provide the “like” and “dislike”
bu�ons for users to select/�lter the displayed items. �ese feedback
information can be used to update our Recommendation module.
In NAIRS, the calculated similarities are cached a�er updating the
model to speed up the results retrieval process.

3.4.2 Similar Items. Intuitively, a user is likely to have similar
level of interest for similar items. �e Similar items module �nds
items similar to the items liked or chosen by the user. In particular,
we provide the end user with a search window for searching any
items in the system. �en the items whose similarities are above a
threshold are returned as the search results. �e similarity between

CIKM’18, October 22-26 2018, Italy Shuai Yu†, Yongbo Wang†, Min Yang†, Baocheng Li†, Qiang�†, Jialie Shen‡

items is calculated as follows:

sim(i, i ′) = 1 +
∑
k (ik − ī)·(i′k − īk)√∑ (ik − ī)2

√∑ (i′k − ī′)2
. (7)

Similar to the Similar Users component, the similarities between
items are cached in the system. When the end user requests similar
items, we can obtain the results in O(1) time.

4 DEMOSTRATION
4.1 Demonstration Setup
�e NAIRS prototype has client and server ends. Clients can ac-
cess the system by web, mainly for rendering recommendation,
interpretation, search, and query results. �e server is deployed on
Apache Tomcat, which performs the recommendation algorithm
and communicates with clients.

4.2 Walkthrough Example
�e NAIRS demo consists of the following steps:

Step 1: �e user can access to the system by web either on PCs
or smart phones. A�er logging onto the system, the user can select
a kind of recommendation service from three categories: movies,
books, and daily goods.

Step 2: If the user is new to the system, a collection of randomly
chosen items are presented, and the user is asked to choose some
items in which the user is interested. A�er submi�ing the chosen
items, the system o�ers the top-10 recommendation lists based
the chosen items. Furthermore, the system shows tag cloud of the
user pro�le, which reveals why the system recommends the speci�c
items to the user. �e user can click any item in the recommendation
list, and the user pro�le tag cloud change accordingly.

Step 3: �e user can query other users that have similar interests
by clicking the “similar users” bu�on. �en the similar users with
their historical lists are returned to the user, and the user can choose
to follow them and �nd the potentially interesting items via this
function.

Step 4: �e user can also search the items similar to the item
inputed by the user. If our system has items for which the user
search, similar items are returned; otherwise, a warning message
is shown. Note that to enhance user experience, we implement an
Auto-suggestion query box.

5 QUANTITATIVE EVALUATION
In this section, we evaluate the performance of NAIRS quantita-
tively, then we investigate the interpretation of the proposed system.
We conduct experiments on two widely used datasets: Movielens-
1M and Pinterest, as the ones used in the study [5]. �e results are
judged with hit ratio(HR) and Normalized Discounted Cumulative
Gain(NDCG), which have been widely used in top-n recommen-
dation [5, 7]. NAIR is compared with several baseline methods
including MF-BPR [9], MF-eALS [6], FISM [7], and MLP [5].

�e experimental results are shown in Figure 3. We observe that
our method outperforms other competitive methods for both of the
datasets, which shows the e�ectiveness of the proposed approach
on top-n recommendation used in the demonstration.

8 16 32 64
Embedding Size

62

64

66

68

70

Hi
t R

at
io

(%
)

MovieLens

MF-BPR
MF-eALS
MLP
FISM
OURS

(a) Movielens HR
8 16 32 64

Embedding Size

34

36

38

40

42

44

ND
CG

(%
)

MovieLens

MF-BPR
MF-eALS
MLP
FISM
OURS

(b) Movielens NDCG

8 16 32 64
Embedding Size

84

85

86

87

88

89

Hi
t R

at
io

(%
)

Pinterest

MF-BPR
MF-eALS
MLP
FISM
OURS

(c) Pinterest HR
8 16 32 64

Embedding Size

52

53

54

55

56

57

ND
CG

(%
)

Pinterest

MF-BPR
MF-eALS
MLP
FISM
OURS

(d) Pinterest NDCG

Figure 3: Performance comparison.

6 CONCLUSION
�e paper proposes NAIRS for interpretable recommendation. A
self-a�ention network is introduced to automatically assign di�er-
ent a�ention weights to interacted items. �is a�ention mechanism
can distinguish the importance of the interacted items and provide
interpretable recommendations. In addition, the learned user and
item embeddings of user pro�les can be used in a variety of down-
stream applications. Both the experiments and demonstration in
the paper show superiority of the proposed scheme.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. ICLR (2015).
[2] Konstantin Bauman, Bing Liu, and Alexander Tuzhilin. 2017. Aspect Based

Recommendations: Recommending Items with the Most Valuable Aspects Based
on User Reviews. In Proceedings of SIGKDD.

[3] Muthusamy Chelliah and Sudeshna Sarkar. 2017. Product Recommendations
Enhanced with Reviews. In Proceedings of RecSys.

[4] Li Chen and Feng Wang. 2017. Explaining Recommendations Based on Feature
Sentiments in Product Reviews. In Proceedings of IUI.

[5] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative �ltering. In Proceedings of WWW.

[6] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In Pro-
ceedings of SIGIR. ACM.

[7] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item
similarity models for top-n recommender systems. In Proceedings of SIGKDD.
ACM.

[8] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N
Recommender Systems. In Proceedings of ICDM.

[9] Ste�en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
�ieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In
Proceedings of UAI. AUAI Press.

[10] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative �ltering recommendation algorithms. In Proceedings of
WWW.

[11] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of SIGIR. ACM.

[12] Xuejian Wang, Lantao Yu, Kan Ren, Guanyu Tao, Weinan Zhang, Yong Yu, and
Jun Wang. 2017. Dynamic a�ention deep model for article recommendation by
learning human editors’ demonstration. In Proceedings of SIGKDD. ACM.

[13] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In Proceedings of SIGIR.

	Abstract
	1 Introduction
	2 Core Algorithm
	3 System Architecture
	3.1 Data Crawler Module
	3.2 Recommendation Module
	3.3 Interpretation Module
	3.4 Retrieval Module

	4 DEMOSTRATION
	4.1 Demonstration Setup
	4.2 Walkthrough Example

	5 Quantitative Evaluation
	6 Conclusion
	References

